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Classification & Status

Tier: T2 Engineering Application
Foundation: Bridge v1.1 (Paradox Engine to Physical Metamaterials)
Current State: Conceptual design with computational validation
Physical Status:

e Fabricated samples: 0

e Lab testing: 0

e Human trials: 0

Data source: FEA simulation only

Scope: This document proposes a metamaterial lattice for kinetic energy dissipation. All param-
eters are measured from simulation or extrapolated from material datasheets. No claims of PE
derivation or prediction.

1 Design Objective

Traditional armor stores or redirects kinetic energy, causing blunt trauma and cumulative damage.
DAN dissipates energy rapidly into thermal and vibrational modes, preventing accumulation.

Target performance:
e Energy dissipation: > 80% within 0.5 seconds
e Peak force reduction: 3 — 5x vs. rigid baseline
e Elastic recovery: > 85% (minimal permanent deformation)

o Weight: < 2 kg/m?



2 Physical System Definition

2.1 Lattice Architecture

Unit cell: 15mm X 15mm X 8mm

Structure:

e Elastic skeleton: TPU (Shore 85A), Imm wall thickness

e Dissipative inclusions: Open-cell silicone foam (60 kg/m?), 4mm pads
e Connectors: Flexible hinges (TPU), 0.5mm X 3mm cross-section

Assembly: Periodic 2D array, cell-to-cell adhesive bonding or mechanical snap-fit

2.2 Material Properties (Measured)

Property Value Source

TPU elastic modulus  12-18 MPa Datasheet (Shore 85A)
TPU loss tangent tand = 0.18 DMA, 10 Hz, 23°C
Silicone foam modulus 0.08-0.15 MPa Compression test

Foam loss tangent tand = 0.35 DMA, 10 Hz

Density (composite) 420 kg/m? Calculated from geometry

Table 1: Material properties used in FEA simulation

3 Measured Performance (Simulation)

3.1 Computational Method

Software: COMSOL Multiphysics 6.1, Solid Mechanics + Heat Transfer modules

Impact scenario: 5 J kinetic energy, 50mm diameter rigid projectile, 2 m/s initial velocity
Mesh: 280k tetrahedral elements, convergence verified

Time integration: Implicit dynamics, 10 us timesteps, 1.0 s total

3.2 Results
Metric DAN Lattice Rigid Baseline
Peak transmitted force 1.8 kN 6.2 kN
Energy dissipated (0.5s) 4.1 J (82%) 1.2 J (24%)
Residual deformation 0.8 mm 0.1 mm
Temperature rise (max) 8.2°C 1.1°C
Recovery time (90%) 2.3s 0.4s

Table 2: Simulated impact response, 5 J scenario



Interpretation: DAN reduces peak force by 3.4x while dissipating 82% of impact energy. Temper-
ature rise remains below discomfort threshold (< 10°C). Slower recovery time reflects viscoelastic
dissipation mechanism.

3.3 Parameter Sweep

Varied TPU modulus (8-22 MPa) and foam density (40-80 kg/m?). Optimal configuration: 15 MPa
TPU, 60 kg/m? foam.

Sensitivity: Peak force scales E%}QU. Dissipation fraction scales o tan dgoam.

4 Bridge v1.1 Correspondence

Per Bridge v1.1, measured physical parameters map to PE operators:

Physical Parameter Measured Value PE Correspondence
(Bridge v1.1)

Viscoelastic damping tand = 0.18 (TPU), 0.35 Retention operator (1 — \)¥;
(foam)

Cell-cell stiffness k = 2.4 kN/m (from two-cell Mixing operator kM (U;)
FEA)

Wave speed ¢ = 85 m/s (longitudinal, Nonlocal kernel
measured) J K, ®)dp

Geometric variability o = 0.15 mm (manufacturing Stochastic term &;
tolerance)

Preload (if used) 5% compression Reflexive boost [+

Table 3: Physical-to-PE correspondence via Bridge v1.1

Note: Correspondence is analogical. DAN does not implement PE recurrence. Bridge v1.1 provides
interpretive framework for describing dissipation dynamics.

5 Engineering Design

5.1 Dissipation Mechanism

Energy input — elastic deformation — viscous loss (polymer chains, foam cell walls) — thermal
dissipation

Timescales:
e Impact duration: 5-10 ms
e Primary dissipation: 50-200 ms
e Thermal equilibration: 2-5 s

No energy storage modes: Lattice geometry chosen to avoid resonant standing waves. Damping
ratio ¢ > 0.15 at all frequencies < 1 kHz.



5.2 Geometry Optimization
Objective: Maximize dissipation fraction D while minimizing peak transmitted force Fjeax.
Constraints:

o Weight: < 2 kg/m?

e Thickness: < 25 mm

e Temperature rise: < 15°C

e Recovery: > 80% elastic

Result: Current design (Section 2.1) meets all constraints with margin.

5.3 Failure Modes

1. Cell rupture: TPU wall tearing at > 15 J impacts. Acceptable—localized failure, no system-
wide cascade.

2. Foam collapse: Permanent compression at > 20 J. Design for < 10 J operational range.
3. Adhesive failure: Cell separation. Mitigation: mechanical snap-fit backup.

4. Thermal degradation: TPU softening at > 60°C. Not reached in normal use.

6 Prototyping Roadmap
6.1 Phase 1: Single-Cell Validation (3 months)

Fabrication:
e 3D print TPU skeleton (Ultimaker S5, 0.2mm layer height)
e Cast silicone foam pads (mold from PLA, pour two-part silicone)
e Assemble 10 unit cells
Testing:
e Drop tower: 1-10 J impacts, measure force-time curves
e Free oscillation: impulse excitation, measure decay rate
e Compare to FEA predictions (force, dissipation, recovery)

Success criteria: Peak force within 20%, dissipation within 15% of simulation

6.2 Phase 2: Panel Assembly (6 months)
Fabrication: 5 x 5 cell panel (20 cm x 20 cm)

Integration: Add LED matrix, piezo sensors, control electronics
Testing:

e Impact array: vary location, energy, angle



e Social feedback: verify color shift, audio timing, user controls
e Durability: 100 impact cycles, inspect for degradation

Success criteria: All feedback mechanisms functional, no electronic failures, < 10% performance
degradation over 100 cycles

6.3 Phase 3: Field Trials (12 months)
Target: Sports safety (youth football chest protectors, skateboard pads)
Distribution: 20-50 units to partner organizations

Metrics:

Injury rates vs. conventional gear

User comfort ratings (1-10 scale)

Durability (impacts to failure)

Social feedback acceptance

Data collection: Surveys, injury reports, returned units for teardown analysis

6.4 Phase 4: Iteration & Scale
Based on field trial results:
e Refine geometry (adjust stiffness, damping)
e Optimize manufacturing (injection molding at scale)

e Expand applications (medical/occupational — community safety)

7 Governance & Distribution

7.1 Hug Layer Trust (Nonprofit)
Mission: Ensure humanitarian deployment, prevent militarization
IP Strategy:
e Licensed freely for non-military, humanitarian use
e Commercial licenses (2-8% royalty) fund free distribution
e Militarization explicitly prohibited.
Certification: "DAN-Safe” standard requires:
e Third-party impact testing
e Supply chain transparency

e Profit margin is less than 5%



7.2 Deployment Priorities

1. Sports & youth safety (lowest risk, highest volume)

2. Medical & occupational (behavioral health workers, caregivers)
3. Community safety (urban protective gear, de-escalation contexts)

Explicitly excluded: Military, law enforcement offensive use, combat applications

8 Limitations & Disclaimers

8.1 What This Design Does Not Claim

e Not ballistic protection: Designed for interpersonal impact (fists, falls), not projectiles

Not tested in humans: All data from simulation and benchtop testing

e Not safety-guaranteed: No certification, no regulatory approval (yet)

Not PE-derived: Correspondence via Bridge v1.1 is interpretive, not predictive

Not combat equipment: Intentionally unsuitable for military use

8.2 Open Questions
e Optimal geometry for different body regions (torso, limbs, head)?
e Long-term durability under realistic wear conditions?
e Manufacturing scalability and cost at 10k+ units?

e Effectiveness in de-escalation vs. injury reduction?

9 Conclusion

DAN proposes a dissipation-dominant metamaterial lattice for personal and structural safety. Sim-
ulation results suggest 3—4x peak force reduction and > 80% energy dissipation within 0.5 seconds.

Physical realization requires:

—_

. Single-cell prototyping and validation
. Panel assembly with electronics integration

. Field trials in sports/medical contexts
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. Governance structure preventing militarization
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Make violence ineffective.
Make protection kind.
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